Speed Reducers for Precision Motion Control

HarmonicDrive®
Reducer Catalog

- Gear Units CSF-2UP
- Engineering Data
Excellent Technology for Evolving Industries

Harmonic Drive® actuators utilize high-precision, zero-backlash Harmonic Drive® precision gears and play critical roles in robotics, semiconductor manufacturing equipment, factory automation equipment, medical diagnostics and surgical robotics. Additionally, our products are frequently used in mission-critical spaceflight applications which capture the human spirit.

With over 50 years of experience, our expert engineering and production teams continually develop enabling technologies for the evolving motion control market. We are proud of our outstanding engineering capabilities and successful history of providing customer specific solutions to meet their application requirements.

Harmonic Drive LLC continues to develop enabling technologies for the evolving motion control market, which drives the pace of global innovation.

C. Walton Musser
Patented Strain Wave Gearing in 1955
Operating Principle of HarmonicDrive® Gears

A simple three-element construction combined with the unique operating principle puts extremely high reduction ratio capabilities into a very compact and lightweight package. The high-performance attributes of this gearing technology including, zero-backlash, high-torque-to-weight ratio, compact size, and excellent positional accuracy, are a direct result of the unique operating principles.

Harmonic Drive® gears have been evolving since the strain wave gear was first patented in 1955. Our innovative development and engineering teams have led us to significant advances in our gear technology. In 1988, Harmonic Drive successfully designed and manufactured a new tooth profile, the “S” tooth. Since implementing the “S” tooth profile, improvement in life, strength and torsional stiffness have been realized. In the 1990s, we focused engineering efforts on designing gears featuring space savings, higher speed, higher load capacity and higher reliability. Then in the 2000s, significant reduction in size and thickness were achieved, all while maintaining high precision specifications.
CSF-2UP mini Series
Gear Unit CSF-2UP

Features ... 158
Ordering code ... 158
Technical data
 • Rating table .. 159
 • Positional accuracy .. 159
 • Hysteresis ... 159
 • Starting torque ... 159
 • Backdriving torque .. 159
 • Racheting torque .. 159
 • Buckling torque ... 159
 • Checking output bearing 160
 • Lubrication .. 160
 • Outline drawing and dimensions 161
 • Wave generator hole diameter 162
 • Mechanical accuracy 162
 • Efficiency .. 163
 • No load running torque 164
 • Mounting and Installation 165
The CSF-2UP gear units are the newest models in the CSF mini-series lineup. These new gear units have an ultra-flat configuration with high-moment stiffness. Harmonic Drive® gear units are zero-backlash gears with a precision output bearing with an integrated housing. The new models are lightweight and extremely flat. Cross roller bearing used at the output flange enables the CSF-2UP gearheads to offer high-moment stiffness. The CSF-2UP mini gearheads are ideally suited for small robots or equipment requiring an ultra-compact solution.

Features

- Zero backlash
- High-positioning accuracy
- Compact and lightweight
- High-torque capacity
- High-radial, axial, and moment load capacity
- Cross roller bearing
- Ratios: 30:1 to 100:1

![Figure 158-1](image)

* The motor mounting flange is designed and sold as an option. Please let us know the required dimension shown in Figure 168-1 on page 168 if you need the flange designed.
* Installation of the motor mounting flange and motor must be performed by the customer. For proper installation, refer to pages 165 through 168.
* The special specification: SP may include other special specifications.

Ordering Code

<table>
<thead>
<tr>
<th>CSF</th>
<th>14</th>
<th>100</th>
<th>2UP</th>
<th>SP</th>
</tr>
</thead>
</table>

Table 158-1

<table>
<thead>
<tr>
<th>Series</th>
<th>Size</th>
<th>Reduction ratio</th>
<th>Model</th>
<th>Special specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF series</td>
<td>8</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CSF series</td>
<td>11</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CSF series</td>
<td>14</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

* Including the motor mounting flange option*
Rating table

<table>
<thead>
<tr>
<th>Size</th>
<th>Ratio</th>
<th>Size</th>
<th>Rating</th>
<th>Limit for repeated peak torque</th>
<th>Limit for average torque</th>
<th>Limit for momentary peak torque</th>
<th>Maximum input speed</th>
<th>Limit for average input speed</th>
<th>Moment of inertia (1/4GD²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nm</td>
<td>Nm</td>
<td>Nm</td>
<td>Nm</td>
<td>rpm</td>
<td>rpm</td>
<td>kg·cm²</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>0.9</td>
<td>1.8</td>
<td>1.4</td>
<td>3.3</td>
<td>8500</td>
<td>3500</td>
<td>4.0 × 10³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.8</td>
<td>3.3</td>
<td>2.3</td>
<td>6.6</td>
<td>8500</td>
<td>3500</td>
<td>1.5 × 10²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.4</td>
<td>4.8</td>
<td>3.3</td>
<td>9.0</td>
<td>8500</td>
<td>3500</td>
<td>4.0 × 10²</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>2.2</td>
<td>4.5</td>
<td>3.4</td>
<td>8.5</td>
<td>8500</td>
<td>3500</td>
<td>1.5 × 10²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3.5</td>
<td>8.3</td>
<td>5.5</td>
<td>17</td>
<td>8500</td>
<td>3500</td>
<td>4.0 × 10²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>5.0</td>
<td>11</td>
<td>8.9</td>
<td>25</td>
<td>8500</td>
<td>3500</td>
<td>4.0 × 10²</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>4.0</td>
<td>9.0</td>
<td>6.8</td>
<td>17</td>
<td>8500</td>
<td>3500</td>
<td>4.0 × 10²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5.4</td>
<td>18</td>
<td>6.9</td>
<td>35</td>
<td>8500</td>
<td>3500</td>
<td>4.0 × 10²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>7.8</td>
<td>28</td>
<td>11</td>
<td>54</td>
<td>8500</td>
<td>3500</td>
<td>4.0 × 10²</td>
<td></td>
</tr>
</tbody>
</table>

Positional accuracy

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Specification</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 arc min</td>
<td>10⁶ rad</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>50 arc min</td>
<td>10⁶ rad</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>All ratios</td>
<td>10⁶ rad</td>
<td>0.58</td>
<td>0.44</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>50 arc min</td>
<td>10⁶ rad</td>
<td>2.00</td>
<td>1.50</td>
<td>1.50</td>
<td></td>
</tr>
</tbody>
</table>

Hysteresis

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Specification</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 arc min</td>
<td>10⁶ rad</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>50 arc min</td>
<td>10⁶ rad</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>100 arc min</td>
<td>10⁶ rad</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>All ratios</td>
<td>10⁶ rad</td>
<td>7.8</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 arc min</td>
<td>10⁶ rad</td>
<td>2.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Starting torque

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.5</td>
<td>3.4</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.92</td>
<td>2.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.65</td>
<td>1.5</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

Backdriving torque

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.70</td>
<td>1.7</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.55</td>
<td>1.2</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.75</td>
<td>1.5</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

Ratcheting torque

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>11</td>
<td>29</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>34</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>14</td>
<td>43</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>

Buckling torque

<table>
<thead>
<tr>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ratios</td>
<td>35</td>
<td>90</td>
<td>190</td>
</tr>
</tbody>
</table>
Cross Roller Bearing Specifications

A precise cross roller bearing is built in the CSF-2UP for the purpose of directly supporting external load (on the output side). In order to fully achieve the performance of the unit, check the maximum moment load, cross roller bearing life, and static safety coefficient.

- **Checking procedure**

 1. **Checking the maximum moment load (M max)**

 Calculate the maximum moment load (M max).

 Maximum moment load (M max) ≤ allowable moment (Mc)

 2. **Checking the life**

 Calculate the average radial load (Fr av) and the average axial load (Fa av).

 Calculate the radial load coefficient (X) and an axial load coefficient (Y).

 Calculate the life and check it.

 3. **Checking the static safety coefficient**

 Calculate the static equivalent radial load coefficient (Po).

 Check the static safety coefficient (fs).

- **Output bearing specifications**

<table>
<thead>
<tr>
<th>Size</th>
<th>Pitch circle</th>
<th>Offset</th>
<th>Basic rated load</th>
<th>Allowable moment load Mc</th>
<th>Moment stiffness Km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dp mm</td>
<td>R mm</td>
<td>Basic dynamic rated load C1 x 10^2 N</td>
<td>Basic static rated load Co x 10^2 N</td>
<td>Nm</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>12.9</td>
<td>58</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>42.5</td>
<td>14</td>
<td>65</td>
<td>99</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>54</td>
<td>14</td>
<td>74</td>
<td>128</td>
<td>75</td>
</tr>
</tbody>
</table>

 *1 The basic dynamic load rating is referred to as a constant static radial load so that the basic dynamic load rating of the bearing is to be a million rotations.

 *2 The basic static load rating is referred to as a static load that provides a constant level contact stress (4kN/mm²) at the center of the contact side between the rolling element that bears the maximum load and the orbit.

 *3 The allowable moment load is referred to as the maximum moment load that can be applied to the output bearing while the basic performance can be retained within the range of the maximum moment load that can be operable.

 *4 The values of the moment stiffness are the reference values. The minimum value is approximately 80% of the display value.

- **Lubrication**

 Grease is the standard lubrication for CSF-2UP mini series. There is no need to add or apply grease upon installation since the products are shipped with the grease applied.

<table>
<thead>
<tr>
<th>Lubricated area</th>
<th>Gear</th>
<th>Cross roller bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubrication</td>
<td>Harmonic Grease® SK-2</td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Harmonic Drive Systems Inc.</td>
<td></td>
</tr>
<tr>
<td>Base oil</td>
<td>Refined oil</td>
<td></td>
</tr>
<tr>
<td>Base Viscosity (25°C)</td>
<td>265 to 295</td>
<td></td>
</tr>
<tr>
<td>Thickening agent</td>
<td>Lithium soap base</td>
<td></td>
</tr>
<tr>
<td>Drop point</td>
<td>198°C</td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>Green color</td>
<td></td>
</tr>
</tbody>
</table>
Dimensions

Unit: mm Table 161-1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>øA</td>
<td></td>
<td>66</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>24.8</td>
<td>27</td>
<td>33.5</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>13</td>
<td>13.5</td>
<td>18.5</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>9</td>
<td>11.5</td>
<td>12</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>2.8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>H*</td>
<td></td>
<td>1.1 1.6</td>
<td>3.5 1.6</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>7.2</td>
<td>8.3</td>
<td>10.5</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>12.9</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>øK</td>
<td></td>
<td>49</td>
<td>59</td>
<td>74</td>
</tr>
<tr>
<td>øL</td>
<td></td>
<td>48</td>
<td>58</td>
<td>73</td>
</tr>
<tr>
<td>øM</td>
<td></td>
<td>33.5</td>
<td>41</td>
<td>52.5</td>
</tr>
<tr>
<td>øN</td>
<td></td>
<td>30</td>
<td>44</td>
<td>52</td>
</tr>
<tr>
<td>øO</td>
<td></td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>lP</td>
<td></td>
<td>50±1</td>
<td>60±1</td>
<td>75±1</td>
</tr>
<tr>
<td>øQ</td>
<td></td>
<td>25.5</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>øR</td>
<td></td>
<td>58</td>
<td>70</td>
<td>88</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>M3 x 5</td>
<td>M4 x 5</td>
<td>M5 x 7</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>øV</td>
<td></td>
<td>3.5</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>øW</td>
<td></td>
<td>52</td>
<td>63</td>
<td>70.71</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>35°</td>
<td>33.5°</td>
<td>55°</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td>M3 x 5</td>
<td>M3 x 6</td>
<td>M4 x 8</td>
</tr>
<tr>
<td>Mass (g)</td>
<td></td>
<td>200</td>
<td>330</td>
<td>620</td>
</tr>
</tbody>
</table>

Wave generator mounting diagram

* Dimension H is the mounting position in the shaft direction and tolerance of the three parts (wave generator, flexspline, circular spline). Strictly observe these dimensions as they affect the performance and strength.
Wave Generator Hole Diameter Dimension
The hole diameter dimension (as shown in Table 161-1 on page 161, øO) can be changed in accordance with the shaft diameter of the mounting motor within the range shown in the table below:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Feature</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>øO H7</td>
<td>2 to 8</td>
<td>3 to 8</td>
<td>4 to 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The special specification is applied to the entire unit when a hole diameter is changed.
* The wave generator of a standard product is a solid wave generator.
* The Oldham type (self-aligning mechanism) is included in the special specification.

Mechanical Accuracy
By using high-accuracy and high-stiffness cross roller bearings, the CSF-2UP mini series, achieves high accuracy. The mechanical accuracy on the output side is shown below.

(Note) Values are based on the Total Indicator Reading (T.I.R.).
Efficiency

The efficiency varies depending on the following conditions.
- Reduction ratio
- Load torque
- Input rotating speed
- Temperature
- Lubrication (Type and quantity)

Efficiency compensation coefficient

The value of efficiency drops when load torque is lower than rated torque. Calculate the compensation coefficient K_e from graph 6-1 and calculate the value of efficiency with the reference to the efficiency compensation calculation formula.

Example: Calculate efficiency η (%) for the CSF-8-100-2UP under the following conditions:
- Input rotational speed 1000 rpm
- Load torque: 2.0 Nm
- Lubrication method: Grease lubricant
- Lubricant temperature: 20°C

Torque ratio α is 0.83 since the rated torque for size 8 and reduction ratio 100 is 2.4 Nm. ($\alpha = 2.0 / 2.4 = 0.83$)

The efficiency compensation coefficient is calculated according to graph 6-1: $K_e = 0.99$

Efficiency η when load torque is 2.0 Nm is calculated: $\eta = K_e \cdot \eta_R = 0.99 \times 77\% = 76\%$

* When load torque is larger than rated torque, efficiency compensation coefficient $K_e = 1.$

Efficiency at rated torque

![Graphs showing efficiency at different ambient temperatures and input rotational speeds for different sizes and ratios.](image)

<table>
<thead>
<tr>
<th>Load torque</th>
<th>Rated torque indicated in the rating table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricant</td>
<td>Grease lubrication</td>
</tr>
<tr>
<td>Name</td>
<td>Harmonic Grease® SK-2</td>
</tr>
<tr>
<td>Quantity</td>
<td>Recommended quantity</td>
</tr>
</tbody>
</table>

Input rotational speed: 500 rpm, 1000 rpm, 2000 rpm, 3500 rpm
No-load running torque

No-load running torque is the torque which is required to rotate the input side (high speed side), when there is no load on the output side (low speed side).

* For details about the values, please contact us.

- Compensation Value in Each Ratio

The no-load running torque of the gear varies with ratio. Graphs 164-1 through 164-4 show the value of reduction ratio 100. Other reduction ratios must be calculated by adding the compensation value indicated in Table 164-2.

- No load running torque for reduction ratio 100

![Graph 164-1](image1.png)

![Graph 164-2](image2.png)

![Graph 164-3](image3.png)

![Graph 164-4](image4.png)

Average value is \bar{X} in this graph.
Example of Mounting

Example of motor mounting is shown below:

Sealing

The sealing structure as shown is required for mounting the motor for the purpose of grease leakage prevention and of maintaining the high-durability of the HarmonicDrive® gear.

<table>
<thead>
<tr>
<th>Area requiring sealing</th>
<th>Recommended sealing method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor mounting flange</td>
<td>Using O-ring (provided with our product)</td>
</tr>
<tr>
<td>On the gear side (On the reducer side)</td>
<td>O-ring, seal agent, seal washer, and others (Take care regarding the distortion on the plane and how the O-ring is engaged)</td>
</tr>
<tr>
<td>On the motor side</td>
<td></td>
</tr>
<tr>
<td>Motor output shaft</td>
<td>Please select a motor output shaft with oil seal attached. If the oil seal is not provided, employ a design where the oil seal is attached to the motor mounting flange.</td>
</tr>
<tr>
<td>Screw hole area</td>
<td>Use the screw lock agent with sealing effect (LOCTITE® 242 is recommended), or use the sealing tape.</td>
</tr>
</tbody>
</table>

* There is no need to apply a seal agent on the output flange because it includes a seal.

Precautions when installing the motor

Be sure that the motor shaft does not protrude from the wave generator more that permitted in Table 165-2 below. (Refer also to Figure 165-1)
Installation accuracy

In order to fully achieve the excellent performance of the CSF-2UP, maintain the recommended installation tolerances shown below:

![Figure 166-1](image1)

<table>
<thead>
<tr>
<th>Tolerance</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Adapter surface</td>
<td>0.010</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>b</td>
<td>Wave generator installation surface</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
</tr>
<tr>
<td>c</td>
<td>Concentricity of the input shaft</td>
<td>0.006</td>
<td>0.007</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Unit: mm Table 166-1

Installation and transmission torque

![Figure 166-2](image2)
Mounting on the flange
When the CSF-2UP mini series is installed on the motor, check the flatness of the mounting face and assure that holes are free from burrs, then fasten the reducer to the mounting flange using bolts.

<table>
<thead>
<tr>
<th>Item</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of bolts</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Bolt size</td>
<td></td>
<td>M3</td>
<td>M3</td>
<td>M4</td>
</tr>
<tr>
<td>Mounting P.C.D.</td>
<td>mm</td>
<td>52</td>
<td>63</td>
<td>70.7</td>
</tr>
<tr>
<td>Tightening torque*</td>
<td>Nm</td>
<td>0.85</td>
<td>0.85</td>
<td>2.0</td>
</tr>
<tr>
<td>Minimum screw length</td>
<td>mm</td>
<td>3.6</td>
<td>3.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Transmission torque*</td>
<td>Nm</td>
<td>18</td>
<td>22</td>
<td>44</td>
</tr>
</tbody>
</table>

* Recommended bolt: JIS B 1176 hexagon socket head bolt, tensile strength rank: JIS B 1051 12.9 or higher

Installation into the equipment
When the CSF-2UP mini series is installed into the equipment, check the flatness of the mounting face and assure that holes are free from burrs, then fasten the reducer to the equipment using bolts.

<table>
<thead>
<tr>
<th>Item</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of bolts</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Bolt size</td>
<td></td>
<td>M3</td>
<td>M4</td>
<td>M5</td>
</tr>
<tr>
<td>Mounting P.C.D.</td>
<td>mm</td>
<td>58</td>
<td>70</td>
<td>88</td>
</tr>
<tr>
<td>Tightening torque*</td>
<td>Nm</td>
<td>1.2</td>
<td>2.7</td>
<td>5.4</td>
</tr>
<tr>
<td>Minimum screw length</td>
<td>mm</td>
<td>3.6</td>
<td>4.8</td>
<td>6.0</td>
</tr>
<tr>
<td>Transmission torque*</td>
<td>Nm</td>
<td>29.0</td>
<td>59.1</td>
<td>119</td>
</tr>
</tbody>
</table>

* When the part of the mounting destination is made of steel
* Recommended bolt: JIS B 1176 hexagon socket head bolt, tensile strength rank: JIS B 1051 12.9 or higher

Mounting load into the output
Mount the load to the output side of the CSF-2UP mini series by taking into consideration the cross roller bearing specifications.

<table>
<thead>
<tr>
<th>Item</th>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of bolts</td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Bolt size</td>
<td></td>
<td>M3</td>
<td>M4</td>
<td>M5</td>
</tr>
<tr>
<td>Mounting P.C.D.</td>
<td>mm</td>
<td>25.5</td>
<td>33.0</td>
<td>44.0</td>
</tr>
<tr>
<td>Tightening torque*</td>
<td>Nm</td>
<td>2.0</td>
<td>4.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Minimum screw length</td>
<td>mm</td>
<td>3.6</td>
<td>4.8</td>
<td>6.0</td>
</tr>
<tr>
<td>Transmission torque*</td>
<td>Nm</td>
<td>31.9</td>
<td>69.6</td>
<td>184</td>
</tr>
</tbody>
</table>

There is no need to apply a sealing compound to the output flange because it includes a seal.

* Recommended bolt: JIS B 1176 hexagon socket head bolt, tensile strength rank: JIS B 1051 12.9 or higher
Motor mounting flange

Optional motor mounting flange is available from Harmonic Drive. If interested in ordering through Harmonic Drive, please let us know dimensions A through J (when the keyhole is attached: A through N) described in Figure 168-1 when ordering.

*Note 1. H: Mounting hole pitch diameter or pitch angular dimension
*Note 2. I: Total number of mounting holes
*Note 3. J: Tap hole nominal diameter and hole depth or through hole diameter
*Note 4. Please let us know the O-ring dimension when it is used on the motor and the motor mounting flange connecting part.
Tooth profile

- S tooth profile

Rotational direction and reduction ratio

- Cup style
- Silk hat style
- Pancake style

Rating table definitions

Life

Torque limits

Product sizing and selection

Lubrication

- Grease lubricant
- Precautions on using Harmonic Grease® 4B No.2
- Oil lubricant
- Lubricant for special environments

Torsional stiffness

Positional accuracy

Vibration

Starting torque

Backdriving torque

No-load running torque

Efficiency

Design guidelines

- Design guideline
- Bearing support of the input and output shafts
- Wave Generator

Assembly guidelines

- Sealing
- Assembly Precautions
- "dedoidal" state

Checking output bearing

- Checking procedure
- How to calculate the maximum moment load
- How to calculate the average load
- How to calculate the radial load coefficient (X) and axial load coefficient (Y)
- How to calculate life
- How to calculate the life under oscillating movement
- How to calculate the static safety coefficient

Engineering Data

Fig. 009-1

Fig. 009-2

Engaged area of teeth

Engaged route of teeth

Conventional tooth profile

S tooth profile

Beginning of engagement

Optimum engaged status
Tooth Profile

S tooth profile

Harmonic Drive developed a unique gear tooth profile that optimizes the tooth engagement. It has a special curved surface unique to the S tooth profile that allows continuous contact with the tooth profile. It also alleviates the concentration of stress by widening the width of the tooth groove against the tooth thickness and enlarging the radius on the bottom. This tooth profile (the “S tooth”) enables up to 30% of the total number of teeth to be engaged simultaneously.

Additionally the large tooth root radius increases the tooth strength compared with an involute tooth. This technological innovation results in high torque, high torsional stiffness, long life and smooth rotation.

*Patented

![Engaged route of teeth](Fig. 009-1)

Conventional tooth profile

![Engaged area of teeth](Fig. 009-2)

S tooth profile

Beginning of engagement

Optimum engaged status
Rotational direction and reduction ratio

Cup Style

Series: CSG, CSF, CSD, CSF-mini

Rotational direction

1. **Reducer**
 - Input: Wave Generator (WG)
 - Output: Flexspline (FS)
 - Fixed: Circular Spline (CS)
 - Reduction ratio: $i = \frac{-1}{R}$

2. **Reducer**
 - Input: Wave Generator (WG)
 - Output: Circular Spline (CS)
 - Fixed: Flexspline (FS)
 - Reduction ratio: $i = \frac{R}{R+1}$

3. **Reducer**
 - Input: Wave Generator (WG)
 - Output: Circular Spline (CS)
 - Fixed: Flexspline (FS)
 - Reduction ratio: $i = \frac{R}{R+1}$

4. **Overdrive**
 - Input: Circular Spline (CS)
 - Output: Flexspline (FS)
 - Fixed: Wave Generator (WG)
 - Reduction ratio: $i = \frac{R+1}{R}$

5. **Overdrive**
 - Input: Flexspline (FS)
 - Output: Wave Generator (WG)
 - Fixed: Circular Spline (CS)
 - Reduction ratio: $i = -R$

6. **Overdrive**
 - Input: Flexspline (FS)
 - Output: Wave Generator (WG)
 - Fixed: Circular Spline (CS)
 - Reduction ratio: $i = R+1$

7. **Differential**
 - When all of the wave generator, the flexspline and the circular spline rotate, combinations (1) through (6) are available.

Silk hat

Series: SHG, SHF, SHD

Rotational direction

1. **Reducer**
 - Input: Wave Generator (WG)
 - Output: Flexspline (FS)
 - Fixed: Circular Spline (CS)
 - Reduction ratio: $i = \frac{-1}{R}$

2. **Reducer**
 - Input: Wave Generator (WG)
 - Output: Circular Spline (CS)
 - Fixed: Flexspline (FS)
 - Reduction ratio: $i = \frac{R}{R+1}$

3. **Reducer**
 - Input: Wave Generator (WG)
 - Output: Circular Spline (CS)
 - Fixed: Flexspline (FS)
 - Reduction ratio: $i = \frac{R}{R+1}$

4. **Overdrive**
 - Input: Circular Spline (CS)
 - Output: Flexspline (FS)
 - Fixed: Wave Generator (WG)
 - Reduction ratio: $i = \frac{R+1}{R}$

5. **Overdrive**
 - Input: Flexspline (FS)
 - Output: Wave Generator (WG)
 - Fixed: Circular Spline (CS)
 - Reduction ratio: $i = -R$

6. **Overdrive**
 - Input: Flexspline (FS)
 - Output: Wave Generator (WG)
 - Fixed: Circular Spline (CS)
 - Reduction ratio: $i = R+1$

7. **Differential**
 - When all of the wave generator, the flexspline and the circular spline rotate, combinations (1) through (6) are available.
Rotational direction

(1) Reducer
Input: Wave Generator
Output: Circular Spline D
Fixed: Circular Spline S

(2) Reducer
Input: Wave Generator
Output: Circular Spline S
Fixed: Circular Spline D

(3) Reducer
Input: Circular Spline D
Output: Wave Generator

(4) Overdrive
Input: Circular Spline S
Output: Wave Generator
Fixed: Circular Spline D

(5) Overdrive
Input: Circular Spline S
Output: Wave Generator
Fixed: Circular Spline D

(6) Overdrive
Input: Circular Spline D
Output: Wave Generator
Fixed: Wave Generator

(7) Differential
When all of the Wave Generator, the Circular Spline S and the Circular Spline D rotates, Combinations (1) through (6) are available.

Reduction ratio

The reduction ratio is determined by the number of teeth of the Flexspline and the Circular Spline.

Example

Number of teeth of the Flexspline: 200
Number of teeth of the Circular Spline: 202

\[i = \frac{Z_f - Z_c}{Z_f} \]

Input: Wave Generator
Output: Circular Spline Fixed: Flexspline

\[i = \frac{1}{R_1} = \frac{200-202}{200} = \frac{-1}{100} \]

Input: Wave Generator
Output: Circular Spline Fixed: Flexspline

\[i = \frac{1}{R_2} = \frac{202-200}{202} = \frac{1}{101} \]

Ri indicates the reduction ratio value from the ratings table.
Rating Table Definitions

See the corresponding pages of each series for values.

■ Rated torque
Rated torque indicates allowable continuous load torque at rated input speed.

■ Limit for Repeated Peak Torque
(see Graph 12-1)
During acceleration and deceleration the Harmonic Drive® gear experiences a peak torque as a result of the moment of inertia of the output load. The table indicates the limit for repeated peak torque.

■ Limit for Average Torque
In cases where load torque and input speed vary, it is necessary to calculate an average value of load torque. The table indicates the limit for average torque. The average torque calculated must not exceed this limit. (calculation formula: Page 14)

■ Limit for Momentary Peak Torque
(see Graph 12-1)
The gear may be subjected to momentary peak torques in the event of a collision or emergency stop. The magnitude and frequency of occurrence of such peak torques must be kept to a minimum and they should, under no circumstance, occur during normal operating cycle. The allowable number of occurrences of the momentary peak torque may be calculated by using formula 13-1.

■ Maximum Average Input Speed
Maximum Input Speed
Do not exceed the allowable rating. (calculation formula of the average input speed: Page 14).

■ Moment of Inertia
The rating indicates the moment of inertia reflected to the gear input.

Life

■ Life of the wave generator
The life of a gear is determined by the life of the wave generator bearing. The life may be calculated by using the input speed and the output load torque.

Calculation formula for Rated Lifetime

\[\text{Lh} = \frac{\text{Tr}}{\text{Tav}} \times \left(\frac{\text{Nr}}{\text{Nav}} \right) \]

Life of the wave generator (L₁₀ or L₅₀)

<table>
<thead>
<tr>
<th>Series name</th>
<th>CSF, CSD, SHF, SHD, CSF-mini</th>
<th>CSG, SHG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life (L₁₀)</td>
<td>7,000 hours</td>
<td>10,000 hours</td>
</tr>
<tr>
<td>Life (average life)</td>
<td>35,000 hours</td>
<td>50,000 hours</td>
</tr>
</tbody>
</table>

Life is based on the input speed and output load torque from the rating table.

Relative torque rating

Example of application motion profile

Graph 012-1

Relative torque rating

Graph 012-2

- **Buckling torque**: 11
- **Ratcheting torque**: 8
- **Life of wave generator (L₁₀)**: 5
- **Fatigue strength of the flexspline**: 4
- **Momentary peak torque**: 3
- **Repeated peak torque**: 2
- **Rated torque**: 1

* Lubricant life not taken into consideration in the graph described above.
* Use the graph above as reference values.
Torque Limits

Strength of flexspline

The flexspline is subjected to repeated deflections, and its strength determines the torque capacity of the Harmonic Drive® gear. The values given for Rated Torque at Rated Speed and for the allowable Repeated Peak Torque are based on an infinite fatigue life for the flexspline. The torque that occurs during a collision must be below the momentary peak torque (impact torque). The maximum number of occurrences is given by the equation below.

\[
N = \frac{1.0 \times 10^4}{2 \times \frac{n}{60} \times t}
\]

Where:
- \(N\) is the allowable number of occurrences
- \(n\) is the rotational speed of the wave generator (rpm)
- \(t\) is the time that impact torque is applied (sec)

The torque that occurs during a collision must be below the momentary peak torque (impact torque). The maximum number of occurrences is given by the equation below.

Buckling torque

When a highly excessive torque (16 to 17 times rated torque) is applied to the output with the input stationary, the flexspline may experience plastic deformation. This is defined as buckling torque.

*

* See the corresponding pages of each series for buckling torque values.

Ratcheting torque

When excessive torque (8 to 9 times rated torque) is applied while the gear is in motion, the teeth between the Circular Spline and Flexspline may not engage properly. This phenomenon is called ratcheting and the torque at which this occurs is called ratcheting torque. Ratcheting may cause the Flexspline to become non-concentric with the Circular Spline. Operating in this condition may result in shortened life and a Flexspline fatigue failure.

*

* See the corresponding pages of each series for ratcheting torque values.

* Ratcheting torque is affected by the stiffness of the housing to be used when installing the circular spline. Contact us for details of the ratcheting torque.

Caution

- If the number of occurances is exceeded, the Flexspline may experience a fatigue failure.

Warning

- When the flexspline buckles, early failure of the HarmonicDrive® gear will occur.

Calculation formula 013-1

\[
N = \frac{1.0 \times 10^4}{2 \times \frac{n}{60} \times t}
\]

- **Allowable occurances**
- **Allowable number of occurrences**
- **Time that impact torque is applied**
- **Rotational speed of the wave generator**
- **The flexspline bends two times per one revolution of the wave generator.**

Figure 013-1

* "Dedoidal" condition.
Product Sizing & Selection

In general, a servo system rarely operates at a continuous load and speed. The input rotational speed, load torque change and comparatively large torque are applied at start and stop. Unexpected impact torque may be applied. These fluctuating load torques should be converted to the average load torque when selecting a model number. As an accurate cross roller bearing is built in the direct external load support (output flange), the maximum moment load, life of the cross roller bearing and the static safety coefficient should also be checked.

Checking the application motion profile
Review the application motion profile. Check the specifications shown in the figure below.

Obtain the value of each application motion profile.
Load torque T_n (Nm)
Time t_n (sec)
Output rotational speed n_n (rpm)

Normal operation pattern
Starting (acceleration) T_1, t_1, n_1
Steady operation T_2, t_2, n_2
Stopping (deceleration) T_3, t_3, n_3
Dwell T_4, t_4, n_4

Maximum rotational speed
Max. output speed n_{max}
Max. input rotational speed n_{max}
(Restricted by motors)

Emergency stop torque
When impact torque is applied T_s, t_s, n_s

Required life $L_{10} = L$ (hours)

Flowchart for selecting a size
Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance ratings.

- Make a preliminary model selection with the following conditions. $n_{\text{av}} = n_{\text{av}} R$
- Obtain the reduction ratio (R): n_i
- Calculate the average input rotational speed from the average output rotational speed (no max) and the reduction ratio (R): n_{av}
- Calculate the average load torque to the output side based on the application motion profile: T_{av}
- Calculate the average output speed: n_{av}
- Obtain the momentary peak torque specification.
- Check whether n_{av} is equal to or more than the momentary peak torque specification.
- Calculate the maximum input rotational speed from the max. output rotational speed (no max) and the reduction ratio (R): n_{max}
- Check whether the preliminary selected model number satisfies the following condition from the rating table.
- Check whether T_s and T_3 are less than the repeated peak torque specification.
- Check whether T_1 and T_3 are less than the repeated peak torque specification.
- Calculate the lifetime. $L_{10} = 7000 \frac{T_1}{T_{av}} n_{\text{av}}$ (hours)
- Check whether the calculated life is equal to or more than the life of the wave generator (see Page 13).

The model number is confirmed.
Example of model number selection

<table>
<thead>
<tr>
<th>Value of each application motion profile</th>
<th>Maximum rotational speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load torque: T (Nm)</td>
<td>Max. output speed: no max = 14 rpm</td>
</tr>
<tr>
<td>Time: t (sec)</td>
<td>Max. input speed: ni max = 1800 rpm</td>
</tr>
<tr>
<td>Output speed: n (rpm)</td>
<td></td>
</tr>
</tbody>
</table>

- **Normal operation pattern**
 - Starting (acceleration): T1 = 400 Nm, t1 = 0.3 sec, n1 = 7 rpm
 - Steady operation (constant velocity): T2 = 320 Nm, t2 = 3 sec, n2 = 14 rpm
 - Stopping (deceleration): T3 = 200 Nm, t3 = 0.4 sec, n3 = 7 rpm
 - Dwell: T4 = 0 Nm, t4 = 0.2 sec, n4 = 0 rpm

- **Emergency stop torque**
 - When impact torque is applied: Tₛ = 500 Nm, tₛ = 0.15 sec, nₛ = 14 rpm

- **Required life**
 - L₁₀ = 7000 (hours)

Calculate the average load torque to the output side based on the application motion profile:

\[
T_{av} = \frac{7 \text{ rpm} \cdot 0.3 \text{ sec} \cdot (400 \text{ Nm})^2 + 14 \text{ rpm} \cdot 3 \text{ sec} \cdot (320 \text{ Nm})^2 + 7 \text{ rpm} \cdot 0.4 \text{ sec} \cdot (200 \text{ Nm})^2}{7 \text{ rpm} \cdot 0.3 \text{ sec} + 14 \text{ rpm} \cdot 3 \text{ sec} + 7 \text{ rpm} \cdot 0.4 \text{ sec}}
\]

\[
T_{av} = 319 \text{ Nm}
\]

Make a preliminary model selection with the following conditions,

\[
T_{av} = 319 \text{ Nm} \leq 620 \text{ Nm}
\]

(Limit for average torque for model number CSF-40-120-2A-GR: See the rating table on Page 39.)

Thus, CSF-40-120-2A-GR is tentatively selected.

Calculate the average output rotational speed:

\[
\text{no}_{av} = \frac{7 \text{ rpm} \cdot 0.3 \text{ sec} + 14 \text{ rpm} \cdot 3 \text{ sec} + 7 \text{ rpm} \cdot 0.4 \text{ sec}}{1800 \text{ rpm} + 14 \text{ rpm}} = 128.6 \geq 120 \text{ rpm}
\]

\[
\text{ni}_{av} = 12 \text{ rpm} = 1440 \text{ rpm}
\]

\[
\text{ni}_{max} = 14 \text{ rpm} \cdot 120 = 1680 \text{ rpm}
\]

Check whether the preliminary selected model number satisfies the following condition from the rating table:

\[
\text{ni}_{av} = 1440 \text{ rpm} \leq 3600 \text{ rpm} \text{ (Max average input speed of size 40)}
\]

\[
\text{ni}_{max} = 1680 \text{ rpm} \leq 5600 \text{ rpm} \text{ (Max input speed of size 40)}
\]

OK

Check whether T₁ and T₃ are equal to or less than the repeated peak torque specification.

\[
\text{T₁} = 400 \text{ Nm} \leq 617 \text{ Nm} \text{ (Limit of repeated peak torque of size 40)}
\]

\[
\text{T₃} = 200 \text{ Nm} \leq 617 \text{ Nm} \text{ (Limit of repeated peak torque of size 40)}
\]

OK

Check whether Tₛ is equal to or less than the momentary peak torque specification.

\[
\text{Tₛ} = 500 \text{ Nm} \leq 1180 \text{ Nm} \text{ (Limit for momentary torque of size 40)}
\]

OK

Calculate the allowable number (Nₛ) rotation during impact torque and confirm \(1.0 \times 10^4\):

\[
Nₛ = \frac{10^4}{2 \cdot \frac{14 \text{ rpm} \cdot 120}{60} \cdot 0.15 \text{ sec}} = 1190 \leq 1.0 \times 10^4
\]

OK

Calculate the lifetime:

\[
L₁₀ = \frac{794 \text{ Nm} \cdot 319 \text{ Nm} \cdot \frac{1}{2} \cdot 2000 \text{ rpm} \cdot 1440 \text{ rpm}}{294 \text{ Nm} \cdot 319 \text{ Nm} \cdot 1^2 \cdot 1440 \text{ rpm}} = 7610 \text{ hours} \leq 7000 \text{ (life of the wave generator: L₁₀)}
\]

OK

The selection of model number CSF-40-120-2A-GR is confirmed from the above calculations.
Lubrication

Grease lubricant and oil lubricant are available for lubricating the component sets and SHD gear unit. It is extremely important to properly grease your component sets and SHD gear unit. Proper lubrication is essential for high performance and reliability. Harmonic Drive® component sets are shipped with a rust-preventive oil. The characteristics of the lubricating grease and oil types approved by Harmonic Drive are not changed by mixing with the preservation oil. It is therefore not necessary to remove the preservation oil completely from the gear components. However, the mating surfaces must be degreased before the assembly.

Gear Units: CSG/CSF 2UH and 2UH-LW; CSD-2UF and -2UH; SHG/SHF-2UH and 2UH- LW; SHG/SHF-2UJ; CSF Supermini, CSF Mini, and CSF-2UP.

Grease lubricant is standard for lubricating the gear units. You do not need to apply grease during assembly as the product is lubricated and shipped. See Page 19 for using lubricant beyond the temperature range in table 16-2.

* Contact us if you want consistency zero (NLGI No.0) for maintenance reasons.

Grease lubricant

Types of lubricant

Harmonic Grease® SK-1A

This grease was developed for Harmonic Drive® gears and features good durability and efficiency.

Harmonic Grease® SK-2

This grease was developed for small sized Harmonic Drive® gears and features smooth rotation of the Wave Generator since high pressure additive is liquefied.

Harmonic Grease® 4B No.2

This has been developed exclusively for the CSF and CSG and features long life and can be used over a wide range of temperature.

(Note)

1. Grease lubrication must have proper sealing, this is essential for 4B No.2. Rotating part: Oil seal with spring is needed. Mating part: O ring or seal adhesive is needed.

2. The grease has the highest deterioration rate in the region where the grease is subjected to the greatest shear (near wave generator). Its viscosity is between JIS No.0 and No.00 depending on the operation.

Compatible grease by size

Compatible grease varies depending on the size and reduction ratio. See the following compatibility table. We recommend SK-1A and SK-2 for general use.

Grease characteristics

Grease

- **SK-1A**
- **SK-2**
- **4B No.2**

Base oil

- **Refined oil**
- **Refined oil**
- **Composite hydrocarbon oil**

Base Viscosity cSt (25°C)

- **265 to 295**
- **265 to 295**
- **290 to 320**

Thickening agent

- **Lithium soap base**
- **Lithium soap base**
- **Urea**

NLGI consistency No.

- **No. 2**
- **No. 2**
- **No. 1.5**

Additive

- Extreme-pressure additive, others
- Extreme-pressure additive, others
- Extreme-pressure additive, others

Drop Point

- 197°C
- 198°C
- 247°C

Appearance

- Yellow
- Green
- Light yellow

Storage life

- 5 years in sealed condition
- 5 years in sealed condition
- 5 years in sealed condition

Name of lubricant

Table 016-1

<table>
<thead>
<tr>
<th>Name of lubricant</th>
<th>Table 016-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>Harmonic Grease® SK-1A</td>
</tr>
<tr>
<td></td>
<td>Harmonic Grease® SK-2</td>
</tr>
<tr>
<td></td>
<td>Harmonic Grease® 4B No.2</td>
</tr>
<tr>
<td>Oil</td>
<td>Industrial gear oil class-2 (extreme pressure) ISO VG68</td>
</tr>
</tbody>
</table>

Temperature

Table 016-2

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Table 016-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>SK-1A 0°C to +40°C</td>
</tr>
<tr>
<td></td>
<td>SK-2 0°C to +40°C</td>
</tr>
<tr>
<td></td>
<td>4B No.2 −10°C to +70°C</td>
</tr>
<tr>
<td>Oil</td>
<td>ISO VG68 0°C to +40°C</td>
</tr>
</tbody>
</table>

* The hottest section should not be more than 40° above the ambient temperature.

Note: The three basic components of the gear - the Flexspline, Wave Generator and Circular Spline - are matched and serialized in the factory. Depending on the product they are either greased or prepared with preservation oil. Then the individual matched components. This can be avoided by verifying that the serial numbers of the assembled gear components are identical.

Other precautions

1. Avoid mixing different kinds of grease. The gear should be in constant load or in one direction continuously, as it may cause lubrication problems.

2. Grease leakage. A sealed structure is needed to maintain the high durability of the gear and prevent grease leakage.
When to replace grease

The wear characteristics of the gear are strongly influenced by the condition of the grease lubrication. The condition of the grease is affected by the ambient temperature. The graph 017-1 shows the maximum number of input rotations for various temperatures. This graph applies to applications where the average load torque does not exceed the rated torque.

Note: Recommended Grease: SK-1A or SK-2

When to replace grease: \(L_{\text{GTn}} \) (when the average load torque is equal to or less than the rated torque)

![Graph 017-1](image)

Calculation formula when the average load torque exceeds the rated torque

\[
L_{\text{GTn}} = L_{\text{GT}} \times \left(\frac{T_r}{T_{AV}} \right)^3
\]

Table 017-1

<table>
<thead>
<tr>
<th>(L_{\text{GTn}})</th>
<th>Grease change (if average load torque exceeds rated torque)</th>
<th>Input revolutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_{\text{GT}})</td>
<td>Grease change (if average load torque is equal to or less than rated torque)</td>
<td>Input revolutions (From Graph)</td>
</tr>
</tbody>
</table>

See the Graph 017-1.

<table>
<thead>
<tr>
<th>(T_r)</th>
<th>Rated torque</th>
<th>Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{AV})</td>
<td>Average load torque</td>
<td>Nm</td>
</tr>
</tbody>
</table>

Calculation formula: See Page 014.

Other precautions

1. Avoid mixing different kinds of grease. The gear should be in an individual case when installed.

2. Please contact us when you use HarmonicDrive® gears at constant load or in one direction continuously, as it may cause lubrication problems.

3. Grease leakage. A sealed structure is needed to maintain the high durability of the gear and prevent grease leakage.

See the corresponding pages of the design guide of each series for "Recommended minimum housing clearance," Application guide" and "Application quantity."
Precautions on using Harmonic Grease® 4B No.2

Harmonic Grease® 4B No.2 lubrication is ideally suited for Harmonic Drive® gears.

(1) Apply the grease to each contacting joint at the beginning of operation.
(2) Remove any contaminants created by abrasion during running-in period.

- See the corresponding pages of the design guide of each series for “recommended minimum housing clearance,” Application guide” and “Application quantity.”

- Precautions

 (1) Stir Grease
 When storing Harmonic Grease 4B No.2 lubrication in the container, it is common for the oil to weep from the thickener. Before greasing, stir the grease in the container to mix and soften.

 (2) Aging (running-in)
 The aging before the main operation softens the applied grease. More effective greasing performance can be realized when the grease is distributed around each contact surface.
 Therefore, the following aging methods are recommended.
 - Keep the internal temperature at 80°C or cooler. Do not start the aging at high temperature rapidly.
 - Input rotational speed should be 1000rpm to 3000rpm. However, the lower rotational speed of 1000rpm is more effective.
 - Set the speed as low as possible within the indicated range.
 - The time required for aging is 20 minutes or longer.
 - Operation range for aging: Keep the output rotational angle as large as possible.

 Contact us if you have any questions for handling Harmonic Grease 4B No.2 lubrication.

Note: Strict sealing is required to prevent grease leakage.

Oil lubricant

- Types of oil
 The specified standard lubricant is “Industrial gear oil class-2 (extreme pressure) ISO VG68.”
 We recommend the following brands as a commercial lubricant.

<table>
<thead>
<tr>
<th>Type of Oil</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial gear oil class-2</td>
<td>Mobil Oil 600XP68</td>
</tr>
<tr>
<td>(extreme pressure) ISO VG68</td>
<td>Exxon EP68</td>
</tr>
<tr>
<td></td>
<td>Shell Omega Oil 68</td>
</tr>
<tr>
<td></td>
<td>COSMO Oil Cosmo gear SE68</td>
</tr>
<tr>
<td></td>
<td>Japan Energy ES gear G68</td>
</tr>
<tr>
<td></td>
<td>NIPPON Oil Bonock M68, Bonock AX68</td>
</tr>
<tr>
<td></td>
<td>Idemitsu Kosan Daphne super gear LW68</td>
</tr>
<tr>
<td></td>
<td>General Oil General Oil SP gear roll 68</td>
</tr>
<tr>
<td></td>
<td>Klüber Syntheso D-68EP</td>
</tr>
</tbody>
</table>

When to replace oil

First time 100 hours after starting operation
Second time or after Every 1000 operation hours or every 6 months
Note that you should replace the oil earlier than specified if the operating condition is demanding.

- See the corresponding pages of the design guide of each series for specific details.

- Other precautions

1. Avoid mixing different kinds of oil. The gear should be in an individual case when installed.

2. When you use size 50 or above at max allowable input speed, please contact us as it may cause lubrication problems.

* Oil lubrication is required for component-sets size 50 or larger with a reduction ratio of 50:1.
Lubricant for special environments

When the ambient temperature is special (other than the "temperature range of the operating environment" on Page 016-2), you should select a lubricant appropriate for the operating temperature range.

Harmonic Grease 4B No.2

<table>
<thead>
<tr>
<th>Type of lubricant</th>
<th>Operating temperature range</th>
<th>Available temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>-10°C to +110°C</td>
<td>-50°C to +130°C</td>
</tr>
</tbody>
</table>

High temperature lubricant

<table>
<thead>
<tr>
<th>Type of lubricant</th>
<th>Lubricant and manufacturer</th>
<th>Available temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>Mobil grease 28: Mobil Oil</td>
<td>-5°C to +160°C</td>
</tr>
<tr>
<td>Oil</td>
<td>Mobil SHC-626: Mobil Oil</td>
<td>-5°C to +140°C</td>
</tr>
</tbody>
</table>

Low temperature lubricant

<table>
<thead>
<tr>
<th>Type of lubricant</th>
<th>Lubricant and manufacturer</th>
<th>Available temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>Multemp SH-KII: Kyodo Oil</td>
<td>-30°C to +50°C</td>
</tr>
<tr>
<td></td>
<td>Isoflex LDS-18 special A: KLÜBER</td>
<td>-25°C to +80°C</td>
</tr>
<tr>
<td>Oil</td>
<td>SH-200-100CS: Toray Silicon</td>
<td>-40°C to +140°C</td>
</tr>
<tr>
<td></td>
<td>Syntheso D-32EP: KLÜBER</td>
<td>-25°C to +90°C</td>
</tr>
</tbody>
</table>

Harmonic Grease 4B No.2

The operating temperature range of Harmonic Grease 4B No.2 lubrication is the temperature at the lubricating section with the performance and characteristics of the gear taken into consideration. (It is not ambient temperature.)

As the available temperature range indicates the temperature of the independent lubricant, restriction is added on operating conditions (such as load torque, rotational speed and operating cycle) of the gear. When the ambient temperature is very high or low, materials of the parts of the gear need to be reviewed for suitability. Contact us if operating in high temperature.

Harmonic Grease 4B No.2 can be used in the available temperature range shown in table 019-1. However, input running torque will increase at low temperatures, and grease life will be decreased at high temperatures due to oxidation and lubricant degradation.
Torsional Stiffness

Stiffness and backlash of the drive system greatly affect the performance of the servo system. Please perform a detailed review of these items before designing your equipment and selecting a model number.

■ Stiffness

Fixing the input side (wave generator) and applying torque to the output side (flexspline) generates torsion almost proportional to the torque on the output side. Figure 018-1 shows the torsional angle at the output side when the torque applied on the output side starts from zero, increases up to +T0 and decreases down to −T0. This is called the "Torque – torsion angle diagram," which normally draws a loop of 0 → A → B → A’ → B’ → A. The slope described in the "Torque – torsion angle diagram" is represented as the spring constant for the stiffness of the HarmonicDrive® gear (unit: Nm/rad).

As shown in Figure 020-1, this "Torque – torsion angle diagram" is divided into 3 regions, and the spring constants in the area are represented by K1, K2, and K3.

K1 — The spring constant when the torque changes from [zero] to [T1]
K2 — The spring constant when the torque changes from [T1] to [T2]
K3 — The spring constant when the torque changes from [T2] to [T3]

■ See the corresponding pages of each series for values of the spring constants (K1, K2, K3) and the torque-torsional angles (T1, T2, θ1, θ2).

■ Example for calculating the torsion angle

The torsion angle (θ) is calculated here using CSF-25-100-2A-GR as an example.

When the applied torque is T1 or less, the torsion angle θ1 is calculated as follows:
When the load torque T0 = 2.9 Nm
θ1 = T0/K1
= 2.9/3.1 × 10⁴
= 9.4 × 10⁻⁴ rad (0.33 arc min)

When the load torque is between T1 and T2, the torsion angle θ2 is calculated as follows:
When the load torque is T2 = 39 Nm
θ2 = θ1 + (T2 - T1)/K2
= 4.4 × 10⁻⁵ + (39 - 14)/5.0 × 10⁴
= 9.4 × 10⁻⁵ rad (3.2 arc min)

When a bidirectional load is applied, the total torsion angle will be 2 × θ2 plus hysteresis loss.

* The torsion angle calculation is for the gear component set only and does not include any torsional windup of the output shaft.

Note: See p.120 for torsional stiffness for pancake gearing.

■ Hysteresis loss (Silk hat and cup style only)

As shown in Figure 020-1, when the applied torque is increased to the rated torque and is brought back to [zero], the torsional angle does not return exactly back to the zero point. This small difference (B – B') is called hysteresis loss.

■ See the corresponding page of each series for the hysteresis loss value.

■ Backlash (Silk hat and cup style only)

Hysteresis loss is primarily caused by internal friction. It is a very small value and will vary roughly in proportion to the applied load. Because HarmonicDrive® gears have zero backlash, the only true backlash is due to the clearance in the Oldham coupling, a self-aligning mechanism used on the wave generator. Since the Oldham coupling is used on the input, the backlash measured at the output is extremely small (arc-seconds) since it is divided by the gear reduction ratio.
Positional Accuracy

Positional Accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values shown in the table are maximum values.

See the corresponding pages of each series for transmission accuracy values.

Example of measurement

\[
\theta_{er} = \theta_i - \frac{\theta_f}{R}
\]

Vibration

The primary frequency of the transmission error of the HarmonicDrive® gear may cause a vibration of the load inertia. This can occur when the driving frequency of the servo system including the HarmonicDrive® gear is at, or close to the resonant frequency of the system. Refer to the design guide of each series.

The primary component of the transmission error occurs twice per input revolution of the input. Therefore, the frequency generated by the transmission error is 2x the input frequency (rev/sec).

If the resonant frequency of the entire system, including the HarmonicDrive® gear, is \(f = 15 \) Hz, then the input speed (N) which would generate that frequency could be calculated with the formula below.

\[
N = \frac{15}{2} \cdot 60 = 450 \text{ rpm}
\]

The resonant frequency is generated at an input speed of 450 rpm.
Starting Torque

Starting torque is the torque value applied to the input side at which the output first starts to rotate. The values in the table of each series indicate the maximum value, and the lower-limit value indicates approximately 1/2 to 1/3 of the maximum value.

Measurement conditions:
No-load, ambient temperature: +20°C

See the corresponding pages of each series for starting torque values.

* Use the values in the table of each series as reference values as they vary depending on the usage conditions.

Backdriving Torque

Backdriving torque is the torque value applied to the output side at which the input first starts to rotate. The values in the table are maximum values, typical values are approximately 1/2 of the maximum values.

Note: Never rely on these values as a margin in a system that must hold an external load. A brake must be used where back driving is not permissible.

Measurement conditions:
No-load, ambient temperature: +20°C

See the corresponding pages of each series for backdriving torque values.

* Use the values in the table of each series as reference values as they vary depending on the usage conditions.
No-Load Running Torque

No-load running torque is the torque which is required to rotate the input side (high speed side), when there is no load on the output side (low speed side). The graph of the no-load running torque shown in this catalog depends on the measurement conditions shown in Table 023-1. Add the compensation values shown by each series to all reduction ratios except 100:1.

- See the corresponding pages of each series for no-load running torque values.

Efficiency

The efficiency varies depending on the following conditions.
- Reduction ratio
- Input speed
- Load torque
- Temperature
- Lubrication (type and quantity)
The efficiency characteristics of each series shown in this catalog depends on the measurement condition shown in Table 023-2.

- See the corresponding pages of each series for efficiency values.

Efficiency compensation coefficient

If load torque is below rated torque, a compensation factor must be employed. Calculate the compensation coefficient Ke from the efficiency compensation coefficient graph of each series and use the following example for calculation.

Example of calculation

Efficiency η (%) under the following condition is obtained from the example of CSF-20-80-2A-GR.
Input rotational speed: 1000 rpm
Load torque: 19.6 Nm
Lubrication method: Grease lubrication (Harmonic Grease SK-1A)
Lubricant temperature: 20°C
Since the rated torque of size 20 with a reduction ratio of 80 is 34 Nm (Ratings: Page 039), the torque ratio α is 0.58. (α=19.6/34=0.58)

- The efficiency compensation coefficient is Ke=0.93 from Graph 023-1.
- Efficiency η at load torque 19.6 Nm: η=Ke·ηR=0.93 x 78=73%
Design Guidelines

Design guideline

The relative perpendicularity and concentricity of the three basic Harmonic Drive® elements have an important influence on accuracy and service life.

Misalignments will adversely affect performance and reliability. Compliance with recommended assembly tolerances is essential in order for the advantages of Harmonic Drive® gearing to be fully realized. Please consider the following when designing:

(1) Input shaft, Circular Spline and housing must be concentric.

(2) When operating, an axial force is generated on the wave generator. Input bearings must be selected to accommodate this axial load. See page 27.

(3) Even though a HarmonicDrive® gear is compact, it transmits large torques. Therefore, assure that all required bolts are used to fasten the circular spline and flexspline and that they are tightened to the recommended torque.

(4) As the flexspline is subject to elastic deformation, a minimal clearance between the flexspline and housing is required. Refer to “Minimum Housing Clearance” on the drawing dimension tables.

(5) The input shaft and output shaft are supported by anti-friction bearings. As the wave generator and flexspline elements are meant to transmit pure torque only, the bearing arrangement needs to isolate the harmonic gearing from external forces applied to either shaft. A common bearing arrangement is depicted in the diagram.

(6) A clamping plate is recommended (item 6). Its purpose is to spread fastening forces and to avoid any chance of making physical contact with the thin section of the flexspline diaphragm. The clamping plate shall not exceed the diaphragm’s boss diameter and is to be designed in accordance with catalog recommendations.
Bearing support for the input and output shafts

For the component sets, both input and output shafts must be supported by two adequately spaced bearings in order to withstand external radial and axial forces without excessive deflection. In order to avoid damage to the component set when limited external loads are anticipated, both input and output shafts must be axially fixed. Bearings must be selected whose radial play does not exceed ISO-standard C 2 class or “normal” class. The bearings should be axially and radially preloaded to eliminate backlash. Examples of correct bearing arrangements are shown in fig 025-1.
Wave generator

Structure of the wave generator
The wave generator includes an Oldham’s coupling type with a self-aligning structure and an integrated solid wave generator without a self-aligning structure, and which is used depends on the series. See the diagram of each series for details. The basic structure of the wave generator and the shape are shown below.

Structure of Oldham’s coupling

Formula for Axial Force

Reduction ratio Calculation formula

Table 027-2

<table>
<thead>
<tr>
<th>Reduction ratio</th>
<th>50</th>
<th>80 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>F’</td>
<td>3</td>
<td>-0.1</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>T</td>
<td>0.07</td>
<td>×0.07</td>
</tr>
<tr>
<td>H</td>
<td>0.07</td>
<td>×30°</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>11.3</td>
</tr>
<tr>
<td>φ</td>
<td>0.07</td>
<td>×32°</td>
</tr>
<tr>
<td>F’</td>
<td>3</td>
<td>11.3</td>
</tr>
<tr>
<td>V</td>
<td>0.07</td>
<td>×36°</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>11.3</td>
</tr>
<tr>
<td>φ</td>
<td>0.07</td>
<td>×38°</td>
</tr>
<tr>
<td>F’</td>
<td>3</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Table 027-3

<table>
<thead>
<tr>
<th>Size</th>
<th>8</th>
<th>11</th>
<th>14</th>
<th>17</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>58</th>
<th>65</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole dim.</td>
<td></td>
</tr>
</tbody>
</table>

Calculation example

Axial force during deceleration

Direction of axial force during deceleration

Direction of axial force during acceleration

Flexspline leads to an axial force acting on the Wave Generator. This force acts to push the Wave Generator out of the Flexspline cup.

When the gear is used to accelerate a load, the deflection of the keyways should sustain the transmission torque. Based on JIS standard, it is necessary that the dimension of keyway includes the dimension of depth of keyway.

The standard hole dimension of the wave generator is shown for each size. The dimension can be changed within a range up to the maximum hole dimension. We recommend the dimension of keyway as follows.

Key:
(1) Ball Separator
(2) Wave generator bearing
(3) Wave generator plug
(4) Insert
(5) Rubwasher
(6) Snap ring
(7) Wave generator hub

Fig. 026-1

Fig. 026-2
Maximum hole diameter of wave generator

The standard hole dimension of the wave generator is shown for each size. The dimension can be changed within a range up to the maximum hole dimension. We recommend the dimension of keyway based on JIS standard. It is necessary that the dimension of keyways should sustain the transmission torque.

* Tapered holes are also available.

In cases where a larger hole is required, use the wave generator without the Oldham coupling. The maximum diameter of the hole should be considered to prevent deformation of the Wave Generator plug by load torque. The dimension is shown in the table below and includes the dimension of depth of keyway.

(Note)
Please contact us for further information on attaching the Wave Generator to the input (motor) shaft.

Axial Force of Wave Generator

When the gear is used to accelerate a load, the deflection of the Flexspline leads to an axial force acting on the Wave Generator. This axial force, which acts in the direction of the closed end of the Flexspline, must be supported by the bearings of the input shaft (motor shaft). When the gear is used to decelerate a load, an axial force acts to push the Wave Generator out of the Flexspline cup. Maximum axial force of the Wave Generator can be calculated by the equation shown below. The axial force may vary depending on its operating condition. The value of axial force tends to be a larger number when using high torque, extreme low speed and constant operation. The force is calculated (approximately) by the equation. In all cases, the Wave Generator must be axially (in both directions), as well as torsionally, fixed to the input shaft.

(Note)
Please contact us for further information on attaching the Wave Generator to the input (motor) shaft.

Axial Force direction of the wave generator

Calculation example

Model name: CSF series
Size: 32
Reduction ratio: 50
Output torque: 382 Nm
(maximum allowable momentary torque)

\[F = 2 \times \frac{382}{(32 \times 0.00254) \times 0.07 \times \tan 30^\circ} \]

\[F = 380 \text{ N} \]
Assembly Precautions

Sealing

Sealing is needed to maintain the high durability of the gear and prevent grease leakage. Recommended for all mating surfaces, if the o-ring is not used. Flanges provided with o-ring grooves must be sealed when a proper seal cannot be achieved using the o-ring alone.

- Rotating Parts: Oil seal with spring is needed.
- Mating flange: O-ring or seal adhesive is needed.
- Screw hole area: Screws should have a thread lock (LOCTITE® 242 is recommended) or seal adhesive.

(Note) If you use Harmonic Grease 4BNo.2, strict sealing is required.

Assembly precautions

The wave generator is installed after the flexspline and circular spline. If the wave generator is not inserted into the flexspline last, gear teeth scuffing damage or improper eccentric gear mesh may result. Installation resulting in an eccentric tooth mesh (Dedoidal) will cause noise and vibration, and can lead to early failure of the gear. For proper function, the teeth of the flexspline and Circular Spline mesh symmetrically.

■ Precautions on the wave generator

1. Avoid applying undue axial force to the wave generator during installation. Rotating the wave generator bearing while inserting it is recommended and will ease the process.
2. If the wave generator does not have an Oldham coupling, extra care must be given to ensure that concentricity and inclination are within the specified limits.

■ Precautions on the circular spline

The circular Spline must not be deformed in any way during the assembly. It is particularly important that the mounting surfaces are prepared correctly.

1. Mounting surfaces need to have adequate flatness, smoothness, and no distortion.
2. Especially in the area of the screw holes, burrs or foreign matter should not be present.
3. Adequate relief in the housing corners is needed to prevent interference with the corner of the circular spline.
4. The circular spline should be rotatable within the housing. Be sure there is no interference and that it does not catch on anything.
5. When a bolt is inserted into a bolt hole during installation, make sure that the bolt fits securely and is not in an improper position or inclination.
6. Do not apply torque at recommended torque all at once. First, apply torque at about half of the recommended value to all bolts, then tighten at recommended torque. Order of tightening bolts must be diagonal.
7. Avoid pinning the circular spline if possible as it can reduce the rotational precision and smoothness of operation.

■ Precautions on the flexspline

1. Mounting surfaces need to have adequate flatness, smoothness, and no distortion.
2. Especially in the area of the screw holes, burrs or foreign matter should not be present.
3. Adequate clearance with the housing is needed to ensure no interference especially with the major axis of flexspline.
4. Bolts should rotate freely when installing through the mounting holes of the flexspline and should not have any irregularity due to the shaft bolt holes being misaligned or oblique.
5. Do not tighten the bolts with the specified torque all at once. Tighten the bolts temporarily with about half the specified torque, and then tighten them to the specified torque. Tighten them in an even, crisscross pattern.
6. The flexspline and circular spline are concentric after assembly. After installing the wave generator bearing, if it rotates in unbalanced way, check the mounting for dedoidal or non-concentric installation.
7. Care should be taken not to damage the flexspline diaphragm or gear teeth during assembly. Avoid hitting the tips of the flexspline teeth and circular spline teeth. AVOID INSTALLED THE CS FROM THE OPEN SIDE OF THE FLEXSPIE AFTER THE WAVE GENERATOR HAS BEEN INSTALLED.

■ Rust prevention

Although the Harmonic Drive® gears come with some corrosion protection, the gear can rust if exposed to the environment. The gear external surfaces typically have only a temporary corrosion inhibitor and some oil applied. If an anti-rust product is needed, please contact us to review the options.

Sealing recommendations for gear units

<table>
<thead>
<tr>
<th>Area requiring sealing</th>
<th>Recommended sealing method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output side</td>
<td></td>
</tr>
<tr>
<td>Holes which penetrate</td>
<td>Use O-ring (supplied with the product)</td>
</tr>
<tr>
<td>housing</td>
<td></td>
</tr>
<tr>
<td>Installation screw /</td>
<td>Screw lock adhesive which has effective seal (LOCTITE® 242 is recommended)</td>
</tr>
<tr>
<td>bolt</td>
<td></td>
</tr>
<tr>
<td>Input side</td>
<td></td>
</tr>
<tr>
<td>Flange surfaces</td>
<td>Use O-ring (supplied with the product)</td>
</tr>
<tr>
<td>Motor output shaft</td>
<td>Please select a motor which has an oil seal on the output shaft.</td>
</tr>
</tbody>
</table>

Area requiring sealing:
- Output side: Holes which penetrate housing, Installation screw / bolt
- Input side: Flange surfaces, Motor output shaft

Recommended sealing method:
- Output side: Use O-ring (supplied with the product), Screw lock adhesive which has effective seal (LOCTITE® 242 is recommended)
- Input side: Use O-ring (supplied with the product), Please select a motor which has an oil seal on the output shaft.
“Dedoidal” state

It is normal for the flexspline to engage with the circular spline symmetrically as shown in Figure 029-1. However, if the ratcheting phenomenon, which is described on Page 013, is caused or if the three parts are forcibly inserted and assembled, engagement of the teeth may be out of alignment as shown in Figure 029-2. This is called “dedoidal”. Note: Early failure of the gear will occur.

How to check “dedoidal”

By performing the following methods, check whether the gear engagement is “dedoidal”.

1. **Judging by the irregular torque generated when the wave generator turns**
 - 1) Slowly turn the input shaft with your hand in a no-load condition. If you can turn it with average force, it is normal. If it turns irregularly, it may be “dedoidal”.
 - 2) Turn the wave generator in a no-load condition if it is attached to a motor. If the average current value of the motor is about 2 to 3 times the normal value, it may be “dedoidal”.

2. **Judging by measuring vibration on the body of the flexspline**

The scale deflection of the dial gauge draws a sine wave as shown by the solid line in Graph 029-3 when it is normally assembled. When “dedoidal” occurs, the gauge draws a deflected wave shown by the dotted line as the flexspline is out of alignment.

![Dial gauge measurement](image-url)

Deflection of the dial gauge

Graph 029-3

180° rotation

360° rotation

Rotational angle of the wave generator

Measuring the deflection on the body of the flexspline

![Measurement diagram](image-url)

Dial gauge
Checking Output Bearing

A precision cross roller bearing is built in the unit type and the gear head type to directly support the external load (output flange) (precision 4-point contact ball bearing for the CSF-mini series). Please calculate maximum moment load, life of cross roller bearing, and static safety factor to fully maximize the performance of a housed unit (gearhead).

- See the corresponding pages on each series for cross roller bearing specifications.

Checking procedure

1. Checking the maximum moment load (M_{max})

 - Calculate maximum moment load (M_{max}).
 - Maximum moment load (M_{max}) ≤ allowable moment (M_c)

2. Checking the life

 - Calculate the radial load (F_{rav}) and the average axial load (F_{av}).
 - Calculate the radial load coefficient (x) and the axial load coefficient (y).
 - Calculate lifetime

3. Checking the static safety coefficient

 - Calculate the static equivalent radial load coefficient (P_o).
 - Check the static safety coefficient (f_s)

How to calculate the maximum moment load

Maximum moment load (M_{max}) is obtained as follows.

Make sure that $M_{max} \leq M_c$.

\[M_{max} = F_{max} \cdot (L_r + R) + F_{max} \cdot L_a \]

Symbols for Formula 030-1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{max}</td>
<td>Max. radial load (N(kgf))</td>
<td>See Fig. 030-1.</td>
</tr>
<tr>
<td>F_{max}</td>
<td>Max. axial load (N(kgf))</td>
<td>See Fig. 030-1.</td>
</tr>
<tr>
<td>L_r, L_a</td>
<td>------ m</td>
<td>See Fig. 030-1.</td>
</tr>
<tr>
<td>R</td>
<td>Offset amount (m)</td>
<td>See Fig. 030-1 and "Specification of the output bearing" of each series.</td>
</tr>
</tbody>
</table>
How to calculate the average load

(Average radial load, average axial load, average output speed)
When the radial load and axial load vary, the life of cross roller bearing can be determined by converting to an average load.

How to calculate the average radial load (Frav)

(Cross roller bearing)
\[
Fr_{av} = \sqrt[\frac{1}{n}] {\frac{n t_1(Fr_1)^{a_1} + n t_2(Fr_2)^{a_2} + \ldots + n t_n(Fr_n)^{a_n}}{n t_1 + n t_2 + \ldots + n t_n}}
\]

(4-point contact ball bearing)
\[
Fr_{av} = \sqrt[\frac{1}{n}] {\frac{n t_1(Fr_1)^{a_1} + n t_2(Fr_2)^{a_2} + \ldots + n t_n(Fr_n)^{a_n}}{n t_1 + n t_2 + \ldots + n t_n}}
\]
Note that the maximum radial load in t1 is Fr1 and the maximum radial load in tn is Frn.

How to calculate the average axial load (Fav)

(Cross roller bearing)
\[
Fa_{av} = \sqrt{\frac{n t_1(Fa_1)^{a_1} + n t_2(Fa_2)^{a_2} + \ldots + n t_n(Fa_n)^{a_n}}{n t_1 + n t_2 + \ldots + n t_n}}
\]

(4-point contact ball bearing)
\[
Fa_{av} = \sqrt{\frac{n t_1(Fa_1)^{a_1} + n t_2(Fa_2)^{a_2} + \ldots + n t_n(Fa_n)^{a_n}}{n t_1 + n t_2 + \ldots + n t_n}}
\]
Note that the maximum axial load in t1 is Fa1 and the maximum axial load in tn is Fant.

How to calculate the average output speed (Nav)

\[
Nav = \frac{n t_1 + n t_2 + \ldots + n t_n}{t_1 + t_2 + \ldots + t_n}
\]

How to calculate the radial load coefficient (X) and axial load coefficient (Y)

<table>
<thead>
<tr>
<th>Formula 031-4</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frav (\frac{1}{2}) (Frav + 2 (Lr + R)) (\frac{1}{2})</td>
<td><=1.5</td>
<td>1</td>
</tr>
<tr>
<td>Frav (\frac{1}{2}) (Frav + 2 (Lr + R)) (\frac{1}{2})</td>
<td>>1.5</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Symbols for Formula 031-4

Frav Average radial load N(kgf)
Frav Average axial load N(kgf)
Lr, La Offset amount m
R Pitch circle diameter of a roller m

See "How to calculate the average load." See Formula 031-1.
See "How to calculate the average load." See Formula 031-2.
See Fig. 030-1 and "Specification of the output bearing" of each series.
See Fig. 030-1 and "Main roller bearing specifications" of each series.
Life of the output bearing

Calculate life of the output bearing by Formula 032-1.

You can calculate the dynamic equivalent radial load (Pc) by Formula 032-2.

Formula 032-1

\[L_{10} = \frac{10^7}{60 \times N_{av}} \times \left(\frac{C}{f_w \cdot P_c} \right)^{0.3} \]

Formula 032-2

\[P_c = X \cdot \left(\frac{F_{av}}{f_w \cdot P_c} + \frac{2(F_{av} \cdot (L_r+R) + F_{av} \cdot L_a)}{dp} \right) + Y \cdot F_{av} \]

Symbols for Formula 032-1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L10</td>
<td>Life (hour)</td>
</tr>
<tr>
<td>N_av</td>
<td>Average output rated load speed (rpm)</td>
</tr>
<tr>
<td>C</td>
<td>Basic dynamic rated load (N [kgf])</td>
</tr>
<tr>
<td>P_c</td>
<td>Dynamic equivalent load coefficient (N [kgf])</td>
</tr>
<tr>
<td>f_w</td>
<td>Load coefficient</td>
</tr>
</tbody>
</table>

Symbols for Formula 032-2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{av}</td>
<td>Average radial load (N [kgf])</td>
</tr>
<tr>
<td>F_{axv}</td>
<td>Average axial load (N [kgf])</td>
</tr>
<tr>
<td>dp</td>
<td>Pitch circle diameter (m)</td>
</tr>
<tr>
<td>X</td>
<td>Radial load coefficient (——)</td>
</tr>
<tr>
<td>Y</td>
<td>Axial load coefficient (——)</td>
</tr>
<tr>
<td>L_r, L_a</td>
<td>———</td>
</tr>
<tr>
<td>R</td>
<td>Offset (m)</td>
</tr>
<tr>
<td>M_ave</td>
<td>Average moment load (Nm)</td>
</tr>
</tbody>
</table>

Load coefficient

<table>
<thead>
<tr>
<th>Load status</th>
<th>f_w Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady operation without impact and vibration</td>
<td>1 to 1.2</td>
</tr>
<tr>
<td>Normal operation</td>
<td>1.2 to 1.5</td>
</tr>
<tr>
<td>Operation with impact and vibration</td>
<td>1.5 to 3</td>
</tr>
</tbody>
</table>

See “How to calculate the average load.”

See Formulas 031-1 and 031-4.

See Figure 030-1 and “Specification of the output bearing” of each series.
How to calculate life during oscillating motion

Calculate the life of the cross roller bearing during oscillating motion by Formula 033-1.

Formula 033-1

(Cross roller bearing)

\[\text{Loc} = \frac{10^6}{60 \times n_1} \times \frac{90}{\theta} \times \left(\frac{C}{f_w \cdot P_c} \right)^{3/2} \]

(4-point contact ball bearing)

\[\text{Loc} = \frac{10^6}{60 \times n_1} \times \frac{90}{\theta} \times \left(\frac{C}{f_w \cdot P_c} \right)^3 \]

Symbols for Formula 033-1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loc</td>
<td>Rated life for oscillating motion</td>
</tr>
<tr>
<td>n1</td>
<td>Round trip oscillation each minute</td>
</tr>
<tr>
<td>C</td>
<td>Basic dynamic rated load</td>
</tr>
<tr>
<td>P_c</td>
<td>Dynamic equivalent radial load</td>
</tr>
<tr>
<td>f_w</td>
<td>Load coefficient</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Oscillating angle /2</td>
</tr>
</tbody>
</table>

Table 033-1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1</td>
<td>cpm</td>
</tr>
<tr>
<td>C</td>
<td>N (kgf)</td>
</tr>
<tr>
<td>P_c</td>
<td>N (kgf)</td>
</tr>
<tr>
<td>f_w</td>
<td>——</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Degree</td>
</tr>
</tbody>
</table>

(Note) A small angle of oscillation (less than 5 degrees) may cause fretting corrosion to occur since lubrication may not circulate properly. Contact us if this happens.
How to calculate the static safety coefficient

Basic static rated load is an allowable limit for static load, but its limit is determined by usage. In this case, static safety coefficient of the cross roller bearing can be calculated by Formula 034-2.

\[
fs = \frac{Co}{Po}
\]

\[
Po = F_{r,\text{max}} + \frac{2M_{\text{max}}}{dp} + 0.44F_{a,\text{max}}
\]

Symbols for Formula 034-1

<table>
<thead>
<tr>
<th>Co</th>
<th>Basic static rated load</th>
<th>N(kgf)</th>
<th>See "Specification of the output bearing" of each series.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po</td>
<td>Static equivalent radial load</td>
<td>N(kgf)</td>
<td>See Formula 034-2.</td>
</tr>
</tbody>
</table>

Symbols for Formula 034-2

<table>
<thead>
<tr>
<th>Fr_{max}</th>
<th>Max. radial load</th>
<th>N(kgf)</th>
<th>See "How to calculate the maximum moment load" on Page 030.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{a,\text{max}}</td>
<td>Max. axial load</td>
<td>N(kgf)</td>
<td>See Formula 034-2.</td>
</tr>
<tr>
<td>M_{\text{max}}</td>
<td>Max. moment load</td>
<td>Nm(kgfm)</td>
<td>See "Specification of the output bearing" of each series.</td>
</tr>
</tbody>
</table>

Operating condition of the roller bearing

<table>
<thead>
<tr>
<th>Condition</th>
<th>fs</th>
</tr>
</thead>
<tbody>
<tr>
<td>When high rotation precision is required</td>
<td>≥3</td>
</tr>
<tr>
<td>When shock and vibration are expected</td>
<td>≥2</td>
</tr>
<tr>
<td>Under normal operating condition</td>
<td>≥1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dp</th>
<th>Pitch circle diameter of a roller</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Fig. 030-1 and "Specification of the output bearing" of each series.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>